Robust Clustering Methods: A Unified View - Fuzzy Systems, IEEE Transactions on
نویسندگان
چکیده
Clustering methods need to be robust if they are to be useful in practice. In this paper, we analyze several popular robust clustering methods and show that they have much in common. We also establish a connection between fuzzy set theory and robust statistics and point out the similarities between robust clustering methods and statistical methods such as the weighted least-squares (LS) technique, the M estimator, the minimum volume ellipsoid (MVE) algorithm, cooperative robust estimation (CRE), minimization of probability of randomness (MINPRAN), and the epsilon contamination model. By gleaning the common principles upon which the methods proposed in the literature are based, we arrive at a unified view of robust clustering methods. We define several general concepts that are useful in robust clustering, state the robust clustering problem in terms of the defined concepts, and propose generic algorithms and guidelines for clustering noisy data. We also discuss why the generalized Hough transform is a suboptimal solution to the robust clustering problem.
منابع مشابه
A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer
1 An approach to fuzzy control of nonlinear systems: Stability and design issues Wang, HO; Tanaka, K; Griffin, MF IEEE TRANSACTIONS ON FUZZY SYSTEMS 1029 STABILITY ANALYSIS AND DESIGN OF FUZZY CONTROL-SYSTEMS TANAKA, K; SUGENO, M FUZZY SETS AND SYSTEMS 1013 Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs Tanaka, K; Ikeda, T; Wang, HO IEEE TRANSACTIONS ON...
متن کاملFuzzy clustering with partial supervision
Presented here is a problem of fuzzy clustering with partial supervision, i.e., unsupervised learning completed in the presence of some labeled patterns. The classification information is incorporated additively as a part of an objective function utilized in the standard FUZZY ISODATA. The algorithms proposed in the paper embrace two specific learning scenarios of complete and incomplete class ...
متن کاملA survey of fuzzy clustering algorithms for pattern recognition. II
Clustering algorithms aim at modeling fuzzy (i.e., ambiguous) unlabeled patterns efficiently. Our goal is to propose a theoretical framework where the expressive power of clustering systems can be compared on the basis of a meaningful set of common functional features. Part I of this paper reviews the following issues related to clustering approaches found in the literature: relative (probabili...
متن کاملLow-complexity fuzzy relational clustering algorithms for Web mining
This paper presents new algorithms (Fuzzy c-Medoids or FCMdd and Robust Fuzzy c-Medoids or RFCMdd) for fuzzy clustering of relational data. The objective functions are based on selecting c representative objects (medoids) from the data set in such a way that the total fuzzy dissimilarity within each cluster is minimized. A comparison of FCMdd with the well-known Relational Fuzzy c-Means algorit...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کامل